THE INFLUENCE OF SHORT PERIODS OF INDUCED ACUTE ANOXIA UPON PULMONARY ARTERY PRESSURES IN MAN

HURLEY L. MOTLEY, ANDRE COURNAND, LARS WEKKA, AARON HIMMELSTEIN AND DAVID DRESDALE

From the Department of Medicine, Columbia University and the Chest and Medical Services of the Columbia University Division, Bellevue Hospital, New York, N. Y.

Received for publication May 19, 1947

The effects of acute anoxia on pulmonary artery blood pressure, induced by breathing low oxygen (10 per cent O\textsubscript{2} in N\textsubscript{2}) for short periods of time, have not been reported in man. Since acute anoxia is used extensively as a cardiac test and is frequently encountered in anesthesia, changes resulting in the pulmonary artery blood pressure should be of interest.

METHODS. The influence of breathing 10 per cent oxygen in nitrogen has been studied on 5 unanesthetized, conscious white males in a resting basal condition. Their age ranged from 23 to 47 years. Four of the subjects had essentially normal cardiac function without pulmonary involvement. In the fifth subject a diagnosis of aortic insufficiency had been made; his brachial artery blood pressure values were within normal limits except for a slight lowering of the diastolic pressure. In table 1 appear data on the average blood pressure values, including systolic, diastolic and mean pressures, in the brachial artery, pulmonary artery and right ventricle of the five subjects. All individual measurements were within normal limits. Right heart pressures and cardiac output were determined by using the right heart catheterization technique (1, 2, 3, 4). Arterial, pulmonary artery and right ventricle blood pressures were measured using the Hamilton manometer (5). In two cases pulmonary artery and right ventricle pressures were taken simultaneously using a double lumen catheter (6); the arterial blood was obtained from the brachial artery and the mixed venous blood from the pulmonary artery. A demand type valve (Army Air Forces A-16) was used to supply the compressed air or the 10 per cent oxygen mixture to the subject. The expired gas was collected in a calibrated Tissot spirometer. Measurements of cardiac output and blood pressures were determined first while breathing ambient air (21 per cent oxygen). Then the subjects breathed the 10 per cent oxygen mixture for a period of approximately 10 minutes, at the end of which the cardiac output was measured and the blood pressures recorded from the brachial artery, pulmonary artery and right ventricle. A second series of control measurements, while breathing ambient air, was taken 30 minutes after the end of the period of low oxygen breathing.

RESULTS. The average data obtained on the 5 subjects appear in table 1.

\footnote{1 Under contract with Aero Medical Laboratory, Wright Field, Dayton, Ohio. Additional support was provided by the Commonwealth Fund and the Life Insurance Medical Research Fund.}
TABLE I
Influence of breathing 10 per cent oxygen on the respiratory gas exchange and hemodynamics in 5 subjects at ambient pressure

<table>
<thead>
<tr>
<th></th>
<th>AVERAGE BREATHING</th>
<th>AVERAGE BREATHING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AIR</td>
<td>10% O₂</td>
</tr>
</tbody>
</table>

1. Arterial blood (brachial artery)
- CO₂ content, vol. %: 48.1, 45.9
- O₂ saturation, %: 94.5, 73.4
- pCO₂, mm. Hg: 39.5, 32.6
- pHs: 7.42, 7.49

2. Mixed venous blood (pulmonary artery)
- CO₂ content, vol. %: 50.3, 49.0
- O₂ saturation, %: 69.5, 50.0
- pCO₂, mm. Hg: 42.8, 36.4
- pHs: 7.40, 7.47

3. Pulmonary ventilation
- Liters per min: 7.2, 11.0
- Rate per min: 16, 20
- CO₂ output cc. per min: 207, 273
- O₂ consumption, cc. per min: 241, 193

4. Cardiac output determination
- Heart rate per min: 67, 80
- Arterio-venous diff., cc. per l: 42, 37
- Blood flow, liters per min: 5.74, 5.20
- Stroke volume, cc: 82, 65

5. Arterial blood pressure, mm. Hg
- Systolic: 121, 128
- Diastolic: 67, 68
- Mean: 90, 93

6. Pulmonary artery blood pressure, mm. Hg
- Systolic: 21.9, 35.1
- Diastolic: 6.0, 13.0
- Mean: 13.1, 23.0

7. Right ventricle blood pressure, mm. Hg
- Systolic: 22.0, 35.0
- Diastolic: 4.2, 7.0
- Mean: 7.9, 14.0

8. Resistance, dynes sec. Cm⁻¹
- Pulmonary: 130, 255
- Peripheral: 1216, 1407

The values are recorded in the first column while breathing air and in the second column while breathing 10 per cent oxygen.

1. Respiratory gases in the blood. The oxygen saturation decreased 21.1 per
cent in the arterial blood and 19.5 per cent in the mixed venous blood while
breathing the 10 per cent oxygen. There was a small decrease in the CO₂
content (1.3–2.2 vol. per cent). The pCO₂ decreased 6.9 mm. Hg in the arterial
blood and 6.4 mm. Hg in the mixed venous blood, with a corresponding increase
of 0.07 of the pHs. This was undoubtedly due to hyperventilation.

2. Pulmonary ventilation. The volume of expired gas was greatly increased
on the 10 per cent oxygen (3.8 liters per min. or 52.7 per cent). The CO₂ output
showed a considerable increase (31.9 per cent) on low oxygen breathing. This
change is consistent with the hyperventilation and with the lowering of the pCO₂
in the blood. The oxygen consumption was reduced 20.0 per cent and the rate
of breathing increased 25.0 per cent on the low oxygen mixture.

3. Pulmonary artery blood pressure. A very significant degree of pulmonary
hypertension was produced by the anoxia, resulting from breathing the 10 per
cent oxygen mixture as shown by the large rise in pulmonary artery blood pressure
(table 1 and fig. 1). The diastolic pressure rise was the greatest, from 6 mm.
Hg on ambient air to 13 mm. Hg on low oxygen. The systolic pressure rose
from 21.9 to 35.1 mm. Hg on an average, and the mean pressure from 13.1 to
23 mm. Hg. The pressure rise in the pulmonary artery occurred rapidly after
the breathing of 10 per cent oxygen started, with maximal increase in pressure
being reached within 2 to 4 minutes. The elevated pressure persisted as long
as the subject breathed the low oxygen mixture (average 15 to 20 min.). After
switching from low oxygen to ambient air breathing, the pulmonary artery
pressure returned rapidly back to normal, with readily measurable changes after
one minute on ambient air breathing. The systolic pressure rise was of the same
magnitude in the right ventricle as in the pulmonary artery; the end diastolic
pressure in the right ventricle rose somewhat.

4. Cardiac output. There was a slight decrease in arterio-venous oxygen
difference (5 cc. per liter) on the low oxygen breathing. Since consumption
was reduced 20.0 per cent, the calculated blood flow was decreased from 5.74 to
5.20 liters per minute (a 9.4 per cent reduction). In general the greater the
decrease in cardiac output on low oxygen, the higher the corresponding pulmo-

Discussion. The transient pulmonary hypertension induced while breathing
Fig. 1. Effect of low oxygen (10 per cent) breathing upon pulmonary artery blood pressure.

Tracings in the pulmonary artery and in the right ventricle were taken simultaneously through a double lumen catheter. Note waves during early part of systole in both curves and on the descending part of the right ventricle curve, probably due to movement of catheter at the time of opening and closing of the pulmonary valve.
10 per cent oxygen for short periods of time has been a consistent observation in subjects with essentially normal blood pressures. The average pulmonary blood pressures while breathing air, for the 5 cases reported, are almost identical to the average normal pulmonary artery blood pressures as recorded in this laboratory. The respiratory gas exchange variations are in accord with previous observations on the effects of anoxia of this magnitude. The exact cause of the lowered oxygen consumption is obscure as the gradient across the pulmonary membrane remains essentially unchanged, and the lowering is not observed in chronic anoxia or in acclimatization.

Drinker (7) has demonstrated in dogs that acute anoxia rapidly increased lymph flow from the lungs and that the excessive lymph movement regularly stopped when pure oxygen was given after short periods of anoxia. Capillary permeability was increased by the anoxia resulting in greater filtration of fluid into the alveolar tissue and into the alveoli. In this respect it may be mentioned that preliminary observation in man on vital capacity measurements failed to show any reduction after breathing 10 per cent oxygen for 10 minutes. Von Euler and Liljestrand (8) have very recently reported a rise in pulmonary artery pressure in anesthetized cats with closed thorax, breathing spontaneously or with artificial respiration on low oxygen mixtures. Cardiac output was not determined in the cats, hence the status of the pulmonary blood flow is unknown. According to these authors the vasoconstriction is due to a direct action of the anoxia on the wall of the vessel without intervention of the autonomic nervous system. They have suggested that the distribution of the pulmonary blood flow is regulated through the various parts of the lung according to the efficiency of aeration for each area, a low blood oxygen saturation producing constriction and a high blood oxygen saturation producing dilatation of the respective pulmonary arterioles.

In man, according to Cournand (9), observations made so far tend to indicate that rapid changes in pulmonary arterial pressure are chiefly caused by variations in blood flow, and that clear-cut proof is lacking for autonomic vasomotor regulation of the pulmonary circulation.

The rise in pulmonary artery pressure induced by anoxia in man in this report cannot be attributed to an increase in cardiac output for the latter was slightly decreased, and in the normal subjects the greater the decrease in cardiac output the higher the corresponding pulmonary artery pressure rise. Among the possible mechanisms of increasing pulmonary vascular resistance, the following may be mentioned: 1, stasis in the smaller pulmonary vessels, and 2, pulmonary arteriolar constriction. Drinker (10) has suggested that the altered capillary permeability inaugurates stasis in the smaller pulmonary vessels, a mechanism creating increased vascular resistance which is the main feature of the changes produced by the anoxia. If this mechanism is not operative in man, it may well be that low oxygen tension in the circulating pulmonary blood causes vasoconstriction of the pulmonary arterioles or precapillaries by direct action, as postulated by von Euler and Liljestrand in their interpretation of their observations in cats. The question may be raised, however, whether pulmonary
arterioles or precapillary vasoconstriction may not be related to the hyperventilation and mild alkalosis associated with low oxygen breathing. In separate studies of the effects of intermittent positive pressure breathing upon respiration and circulation, hyperventilation and alkalosis of greater magnitude have been observed. These failed to elicit a rise in pulmonary arterial pressure, greater than the expected small increase due to changes in intra-thoracic pressures. On the basis of this experience, it would seem reasonable to doubt that hyperventilation and alkalosis are the cause of the findings reported here.

SUMMARY

1. Pulmonary hypertension was rapidly induced in subjects with normal blood pressures by breathing 10 per cent oxygen for short periods of time with only a very slight rise in systemic blood pressure. The pulmonary pressures rapidly returned to normal when the low oxygen breathing was discontinued.

2. Cardiac output was decreased slightly during anoxia, and the stroke volume markedly reduced, the latter largely the result of an increased heart rate.

3. Pulmonary vascular resistance was almost doubled during anoxia while the systemic peripheral resistance increased only slightly.

4. The possible mechanisms involved in this increased pulmonary vascular resistance during short periods of acute anoxia are discussed.

REFERENCES

(4) **Cournand, A.** Fed. Proc. 4: 207, 1945.
(7) **Warren, M. F. and C. K. Drinker.** This Journal 136: 207, 1942.
(10) **Drinker, C. K.** Personal communication, 1947.