Kinetics of mitochondrial flavoprotein and pyridine nucleotide in perfused heart

BRITTON CHANCE, IRVING A. SALKOVITZ, AND ARISTID G. B. KOVACH
Johnson Research Foundation, University of Pennsylvania, Philadelphia, Pennsylvania 19104

The increasing fund of knowledge on the properties of respiratory pigments of isolated mitochondria coupled with new techniques for their study in cells and tissues affords new approaches to the study of four fundamental biochemical and physiological relationships: a) the nature and function of the electron transport system in the intact tissue, b) the interaction between energy sources and energy sinks in a functional tissue such as cardiac muscle, c) the effectiveness with which oxygen is transported to the intracellular mitochondrial spaces from the extracellular capillary space, and d) the nature of the specific activator of mitochondrial function in situ, ADP + Pi and/or Ca²⁺.

Particularly important to the problem of cell function is the identification of metabolic states in mitochondria controlled by the substrate, oxygen, and energy levels. A transition between such states that is significant in muscular activity is the resting-active transition in which the energy demand on mitochondrial energy conservation vastly alters the steady state and kinetic properties of the electron carriers (12, 24). In previous studies repetitive stimulation of the isolated sartorius muscle activated the resting (state 4) to active (state 3) transition and increased the oxidation of reduced PN (16, 23, 38). Such transitions are observed in the steady-state level of reduced PN by spectrophotometry (28) and fluorometry (16) and of cytochrome b by spectrophotometry (22, 38, 40). More recent studies of isolated mitochondria (26) show that the energy state of the mitochondria can be deduced from the kinetics of respiratory enzymes in the anaerobic-aerobic transition of cytochromes b, c₁, and c₃ caused by O₂ pulses (11). These experiments identify accelerated responses of the flavoproteins and pyridine nucleotides when ADP and Pi are present and even faster rates of these transitions when the energy is needed for transporting calcium as well (unpublished observations). In essence, the mitochondrial respiratory chain contains sensitive indicators of the extent and nature of the energy demand. Since one of the principal problems of tissue bioenergetics in normal and abnormal states is the functionality of mitochondria in situ (an example is the irreversible damage in stroke and shock (43)), it seems desirable to be able to apply the techniques developed for isolated mitochondria directly to the intact tissue.

The metabolic transition employed in our mitochondrial experiment was from anoxia to normoxia in the rapid flow apparatus; oxygen pulses are delivered to the anaerobic suspension of isolated mitochondria. The oxidation time for Fp and PN was as short as 100 msec (unpublished observations). When oxygen pulses are delivered to perfused organs the time from anoxia to normoxia may be 20–30 sec (25, 60) and even with the intact organ circulated in vivo, recovery from ischemia in the liver requires 2–3 sec (20) due to diffusion limitation in the tissue.

Spontaneous or evoked contractility affords fast perturbation of the metabolic state of skeletal and cardiac muscle (16, 23, 38) and causes a fast oxidation of PN due to the arrival of ADP (or Ca²⁺) at the mitochondria (17). This perturbation has the great advantage that diffusion time from the myofibrils to the mitochondria is short (<100 μsec) and in particular cases mitochondrial responses 200 msec after a single muscle twitch are observed (see ref. 17, Fig. 1).

The diffusion limitation in the anaerobic-aerobic transition can be avoided by methods that perturb the biological system after diffusion equilibrium of the relevant metabolites has been established. Specific perturbation of single enzymes is not possible with available relaxation methods...
which alter only the fundamental variables of temperature, pressure, volume, etc. For example, a temperature perturbation alters the enzyme activities and metabolic flux rates on a wide range of components rather than a specific component as we desire. An example of a temperature perturbation is afforded by a laser-induced temperature jump (~10 °C) applied to a toad sartorius muscle. A biphasic decrease of the fluorescence of NADH was observed. The fast decrease was due to a decrease in quantum efficiency and the slow decrease was due to a temperature induced change of metabolism that reached a peak at 200 msec. This type of perturbation was exploited further in cell suspensions in which xenon flash and joule heating were employed. The 5 °C temperature jump reached equilibrium in about 400 msec, causing an activation of the enzymes of glycolysis as evidenced by an increased NADH oxidation. However, the response could not be identified with a single enzyme or chemical species. One way to obtain a more specific perturbation is the electrophoretic injection of substrate into the cytosol of a single cell which gives a fluorescence increase due to NAD or NADP reduction with a half-time of a few hundred milliseconds.

While the temperature jump perturbations caused extensive transients in the glycolytic metabolism because the temperature coefficients of the steps are large and nonidentical, the successive steps of electron transport in mitochondria have nearly identical temperature coefficients and thus little effect can be observed with temperature perturbation. However, a large and specific activation of mitochondrial electron flow is caused by flash photolysis of cytochrome a3 in the presence of oxygen. This technique has previously been employed in the study of isolated cytochrome oxidase and can now be effectively applied to suspensions of isolated mitochondria. In brief, the technique involves carbon monoxide inhibition of the anaerobic mitochondria, their rapid mixture with oxygen in the regenerative flow apparatus, illumination with a photolyzing light of sufficient intensity to break the cytochrome a3-CO bond, and a sufficiently rapid optical readout system to follow the rapid oxidation of cytochrome a3 + a (11) and cytochrome c (6). Under these conditions, the observed reaction rates are limited neither by the speed of photolysis of the CO compound nor by the mixing of oxygen with the cytochrome oxidase; the intrinsic rates of the electron transport reactions are directly measured.

In addition to electron transport activation, ATP formation, ion pumping, and substrate transport are rapidly initiated and thus this technique can be of great value in relating the response time for activation of these functions with overall physiological activities. The kinetics of activation of electron transport can be read out not only in terms of cytochromes of types a, a3, and c but also from the energy-dependent cytochrome b7 (26, 69) and the fluorescent electron transport components, oxidized Fp and reduced NAD (unpublished observations). The rate of the response can be sensitive indicators of the mitochondrial phosphate potential (ADP/ADP + P1) (15) or energy charge (1).

With flash photolysis techniques in general, it is essential that the mixing time for the a3-CO compound with oxygen be shorter than the time for spontaneous dissociation of the a3-CO compound. While this is easy to achieve in the regenerative flow apparatus, it can become of critical importance in tissues where the mixing of oxygen with the CO-inhibited oxidase depends on the effectiveness of perfusion and the speed of diffusion from the capillaries to the tissue mitochondria. From our previous experimental results on the relatively slow recovery of tissues from anoxia, it is clear that the rate of dissociation of carbon monoxide from cytochrome a3 at 20 °C (6) is fast enough so that some difficulties might be encountered. This paper describes the resolution of these problems, the design of a satisfactory experimental approach to flash photolysis of cytochrome a3-CO in the presence of oxygen in cardiac tissue with the readout of the kinetics of electron transfer and tissue bioenergetics in terms of the fluorescent Fp and reduced PN components of the mitochondria.

The rat heart has been selected because of its physiological and biochemical characteristics. The high volume ratio of mitochondria (0.34) (56) together with the relatively small contribution of tubular sarcoplasm to the total sarcolemma area make an experimental material suitable for evaluation of mitochondrial function in contractile-relaxation processes. Thus, a further investigation of the role of mitochondria in muscular function (37, 41, 49, 51) and a more critical evaluation of our previous conjectures may be possible (8). In addition, this work may provide an essential first step on the way to the study of kinetics of enzyme reactions in tissues.

METHODS

An illustration of the apparatus as employed for recording fast fluorescence changes in the perfused heart is provided by Fig. 1. The general characteristics of the time-sharing fluorometer for Fp and PN have been described previously (14, 18). The apparatus consists of two sets of filters for excitation and emission measurements of PN (366 and 480 nm, respectively) and Fp (460 and 580 nm, respectively) which are rotated at 1,800 rpm before the excitation lamp (H6 Hg lamp) and measuring photomultiplier PM3. The timing drive connects the rotating disk to a synchronous motor. The rotation is synchronous with the alternating light pulses from the a-c driven lamp. The light from the mercury arc is passed through local absorbing filters that diminish the intensity of the light as well. An image of a limiting aperture is projected as a 1–3 mm spot upon the surface of the perfused heart. The emitted fluorescence is imaged upon PM3 via a lens and an appropriate filter. The waveform of pulses corresponding to the fluorescent signals are balanced against a similar series of pulses obtained from a compensating photomultiplier PM0 so that for the normoxic state of the heart, the pulses are exactly canceled out and the effect of light intensity fluctuations is negligible. In the anoxic state of the heart the pulses are unbalanced and a gated detector circuit identifies this difference and reads out the resulting traces for the Fp and PN signals on a strip chart and storage oscilloscope (Tektronix 564). Photolysis of the cytochrome a3-CO compound in the presence of O2 is ob-

208

CHANCE, SALKOVITZ, AND KOVACH
KINETICS OF FLAVOPROTEIN AND PYRIDINE NUCLEOTIDE IN HEART

Timing Belt Drive PM...

Perfused Heart—28 J Xenon Flash

FIG. 1. A diagram of perfused heart illustrating relationship of fluorometer and photolysis by liquid dye laser and xenon flash lamp.

Fluorescence change in response to a normoxic-anoxic cycle were recorded from the left and right ventricles with satisfactory results although somewhat larger signals were obtained from the left ventricle (~50%) which was employed in most experiments (experiments in collaboration with Mr. Guy Salama). No more detailed survey of the heart surface has been made.

Photolysis. Two light sources afford photolysis for the carbon monoxide-inhibited cytochrome system. A xenon flash lamp (2-msec flash, 28-J white light) (Braun F 270) is filtered through a 430 ± 10-nm filter so that interference with the PN readout at 480 nm is diminished. A reflector in the flash lamp plus a Lucite light cone increased the
efficiency of illumination. Two xenon flash lamps and cones may be employed (see below).

Photolysis with the liquid dye laser (LDL) (General Laser GL-1,000) (585 nm, 100 mJ intensity) is via a small mirror. The laser affords this power output at an operating voltage of approximately 14 kv when employing a Rhodamine 6G dye. The laser beam is highly parallel and of roughly 1 cm diam. Thus, the heart is uniformly illuminated by the laser beam.

The heating of the heart from the 0.1-mJ laser flash is readily calculated since 4 J are required to raise 1 ml of H2O by 1 C. Two calculations can be made. The first one assumes that all the laser light is uniformly absorbed in the appropriately 1 ml volume of the heart. The temperature rise under these conditions is 0.1/4 or 0.025 C. A second calculation assumes that only the mitochondria are heated within this volume of tissue since the mitochondria comprise about one-third of the total tissue volume (56), the temperature rise would be 1 C. The possibility that the laser damages the mitochondria as suggested by experiments at higher powers (3, 33) is unlikely; repeated flashes cause no decrease of mitochondrial signals. A response to increased temperature to be expected is the decrease of PN fluorescence at about 1%/°C due to the decrease of quantum yield; no significant effect is seen. The jump responses to flash photolysis do not depend upon which ventricle is illuminated and thus a specific effect upon the pacemaker cells is unlikely. This viewpoint is supported by studies with electrically driven hearts.

The xenon flash lamp with a 430-nm filter caused about the same photolysis as the LDL; the extinction coefficient of cytochrome oxidase is approximately 10 times greater at 430 nm than at 585 nm.

A double flash is useful to evaluate the extent of photolysis. One flash occurs a few seconds after perfusing the tissue with oxygen and another flash occurs several seconds later. The two xenon flash lamps are triggered by an appropriate synchronizing circuit. Two Lucite cones can be employed to direct the light from these lamps upon the same area of the heart.

Synchronizing circuits. In addition to the circuitry for the time-sharing fluorometer, the photolysis lamps are also synchronized with the rotating disk so that their flashes are triggered during an interval when the photomultiplier is not illuminated. The xenon flash occurs following the Fp trigger during an interval when the photomultiplier is not illuminated. Thus, the heart is uniformly illuminated by the laser beam.

The heating of the heart from the 0.1-mJ laser flash is readily calculated since 4 J are required to raise 1 ml of H2O by 1 C. Two calculations can be made. The first one assumes that all the laser light is uniformly absorbed in the appropriately 1 ml volume of the heart. The temperature rise under these conditions is 0.1/4 or 0.025 C. A second calculation assumes that only the mitochondria are heated within this volume of tissue since the mitochondria comprise about one-third of the total tissue volume (56), the temperature rise would be 1 C. The possibility that the laser damages the mitochondria as suggested by experiments at higher powers (3, 33) is unlikely; repeated flashes cause no decrease of mitochondrial signals. A response to increased temperature to be expected is the decrease of PN fluorescence at about 1%/°C due to the decrease of quantum yield; no significant effect is seen. The jump responses to flash photolysis do not depend upon which ventricle is illuminated and thus a specific effect upon the pacemaker cells is unlikely. This viewpoint is supported by studies with electrically driven hearts.

The xenon flash lamp with a 430-nm filter caused about the same photolysis as the LDL; the extinction coefficient of cytochrome oxidase is approximately 10 times greater at 430 nm than at 585 nm.

A double flash is useful to evaluate the extent of photolysis. One flash occurs a few seconds after perfusing the tissue with oxygen and another flash occurs several seconds later. The two xenon flash lamps are triggered by an appropriate synchronizing circuit. Two Lucite cones can be employed to direct the light from these lamps upon the same area of the heart.
but did afford a control of the generalized physiologic function of the heart.

Reproducibility of preparation. The experiments described here are based upon the studies of over 300 rat hearts and the charts included here are representative of the vast majority of these experiments. As described below under Experimental design, a successful experiment requires rapid reoxygenation of the tissue following an anoxic episode. In hearts from the Holtzman strain, this was regularly observed and responses from Fp and PN are obtained as indicated in the diagrams of this paper. In some rats from other strains, the reoxidation of PN and particularly Fp was incomplete after the first cycle of anoxia. Furthermore, the ventricular pressure which fell sharply following this cycle failed to recover for an extended interval (ca. 10 min). No detailed studies have been made of this phenomenon but it is assumed that the tissue circulation in the area under observation is somehow impaired by a brief episode of anoxia. Thus the first response of the heart to anoxia was carefully monitored. In addition, special precautions were taken to avoid an anoxic episode in the interval between excision of the heart and transfer to the perfusion apparatus.

Calibration procedure. The calibration of the fluorometer is: 1 scale division = 12.5% change of fluorescence. The aerobic heart itself is used as the fluorescence standard, the amplifier gain and PM voltage is set to give 1 v signal (2 scale divisions) from the aerobic heart. The amplifier gain is then increased 4 times so that each scale division represents 12.5%. The time base is usually 1 cm/sec, but occasionally 0.5 cm/sec. The response speeds employed range from approximately 1 sec or 40 msec (for 10-90% response).

In actual operation the heart is initially put in the anoxic condition with 67% CO + 28% N₂ + 5% CO₂. The perfusate is then changed to 95% O₂ + 5% CO₂ by altering the fluid connections and at the same time the sweep is triggered. The photolysis flash occurs 0.5-1.0 sec after the recovery from anoxia is detectable. The photolysis flash then activates the respiratory carriers and the metabolic state of the tissue can be read out in terms of their rate of oxidation. The system is allowed to reestablish its normoxic state and an interval of 5 min elapses before the next episode of toxic anoxia.

Measurement of cytochrome a₃-CO. The apparatus described in Fig. 1 can be employed for spectroscopic measurements as well (14, 18). Interference filters of 445 and 455 nm are inserted into additional holes in the disk. A PM views the light transmitted through a single thickness of the heart wall via a 1-mm diam light pipe.

Experimental design. Optimal results for this experiment require a careful evaluation of the parameters. Ideally 100% saturated cytochrome a₃-CO is completely photolyzed by the light flash to give 100% reduced a₃ which combines with excess O₂ to give 100% oxidized a₃. This ideal is only imperfectly realized; the amount of photolysis depends on the interaction of four factors: 1) the CO concentration of the perfusion, 2) the extent of preflash photolysis, 3) the extent of flash photolysis, and 4) the oxygen concentration. Whereas in the dark a few tenths of a percent of CO will satisfy the requirements for initial CO saturation in view of the high affinity for CO (10⁻⁸ M) (13), the photolysis caused by the fluorescence excitation shifts the CO affinity to lower values due to an increase of kₙ of equation 6 of ref. 1 and causes "preflash photolysis." The extent of preflash photolysis is diminished by high CO (kₙ is increased (see equation 5 of ref. 6)). A high fluorescence excitation intensity is required for the fast readout of fluorometric signals; thus, a signal to noise ratio in excess of 10 may result in a preflash photolysis of up to 25% of the total oxidation reduction change. Flash photolysis of cytochrome a₃ was over 95% complete with the laser source or the xenon flash source, taking, in this case, 100% to be that obtained with the double-flash technique (see above and below). The filling of the capillaries and the diffusion velocity of oxygen in the tissue should be fast enough so that the oxygen gradient moves through most of the a₃-CO molecules in the field of observation in the interval between initiating the oxygen perfusion and the flash photolysis. Under these conditions the oxidation rates of PN and Fp will be indicative of the ADP + P₁ and Ca²⁺ levels in the cytosol.

The interaction of these factors above leads to four categories of cytochrome a₃ molecules at the time of photolysis. First, cytochrome a₃-CO molecules that are in the presence of a sufficiency of oxygen, i.e., an oxygen concentration which upon photolysis will give a significant oxidation of Fp and PN. Second, cytochrome a₃ molecules that are in a deficiency of oxygen such that no significant response of Fp and PN is observed on photolysis. Third, reduced cytochrome a₃ molecules from which CO has dissociated but which oxygen has not yet reached. Fourth, oxidized cytochrome a₃ molecules from which CO has already dissociated and with which oxygen has already reacted prior to the time of the photolysis flash.

The populations of molecules in these categories will vary with time. For example, the fourth category is increased rapidly upon photolysis, those in the third category will recombine with CO if oxygen does not arrive in a short time. The molecules in category 2 are of considerable interest because these can acquire category 1 status as the oxygen diffusion gradient moves through the tissue which is in turn related to the effectiveness of tissue oxygenation. The category 1 molecules will respond rapidly to photolysis if both oxygen and high Ca²⁺ are present (unpublished data).

Categories 1 and 2 are identified respectively with a sufficiency and a deficiency of oxygen. This can be quantitated as follows: molecules are in category 2 if on photolysis they produce a cytochrome oxidation rate slower than the observed oxidation of Fp (t₅₀ = 60 msec). Since the second-order velocity constant for cytochrome a₃ with oxygen is 3 X 10⁹ M⁻¹sec⁻¹ (11), a half-time of 60 msec would be obtained at 1 µm tissue oxygen; cytochrome a₃-CO molecules photolyzed in <1 µm oxygen are therefore in category 2.

The partitioning of molecules between category 1 and category 4 depends on the rate at which cytochrome a₃-CO molecules dissociate in the time interval between the entry of oxygen into the tissue and the flash photolysis. It is for this reason that the coronary perfusion and the oxygen diffusability in the tissue are important variables. In addition, the photolysis of the cytochrome a₃-CO compound by the measuring light now becomes of critical importance and appropriate control experiments are described below.
the presence of 20% CO (Fig. ZC), the cytochrome as-CO (Fig. ZB), the xenon flash causes no absorbance change. In anoxia original base line. Evidence of flash photolysis of cytochrome as-CO is afforded by Fig. 2, B and C. In anoxia cytochrome as-CO is converted to the oxidized form as-CO. The absorbancy change with CO is about half of the oxygen-nitrogen change identifying the formation of the as-CO compound in isolated mitochondria, we illustrate typical responses of the perfused heart. Usually a statistical analysis is unnecessary since each experiment contains a prior control or allows a recovery of the heart to its initial state, after which the experiment is repeated. Thus, the illustrative charts represent one of a series of repetitions of the particular test.

Cytochrome as-CO reaction in perfused heart. In order to identify the as-CO compound in the cardiac tissue and to afford a basis for the application to cardiac tissue of studies on the as-CO compound in isolated mitochondria, we illustrate in Fig. 2 dual-wavelength absorbancy measurements at 445-455 nm made through the wall of the heart into a light pipe and then to the measuring photomultiplier. The heart is initially under normoxic conditions and is perfused with nitrogen-saturated medium. The consequent anoxia causes an upward deflection of the trace corresponding to increased absorbancy at 445 nm. Following complete reduction of cytochrome as, perfusion with 0.6% CO begins and at this low CO concentration approximately 6 min are required to reach the saturation value of cytochrome as-CO. The absorbancy change with CO is about half of the oxygen-nitrogen change identifying the formation of cytochrome as-CO (6, 11). On addition of oxygen, the as-CO compound is converted to the oxidized form as indicated by the downward deflection of the trace to the original baseline. Evidence of flash photolysis of cytochrome as-CO is afforded by Fig. 3, A, B, and C, in anoxia (Fig. 2B), the xenon flash causes no absorbance change. In the presence of 20% CO (Fig. 2C), the cytochrome as-CO compound rapidly photolyzes and gives an abrupt absorbancy decrease at 445 nm. After the flash, CO rapidly recombines with cytochrome as. If however oxygen were present as in later figures, oxidation of cytochrome as and the mitochondrial components would follow. In these experiments residual hemoglobin and tissue myoglobin are converted from the ferrous to the ferrous forms by nitrite perfusion as mentioned under Methods and, thus, interference with their CO and oxygen compounds is negligible.

Fluorescence recordings of PN and Fp. The kinetics of recovery from anoxia are indicated in Fig. 3 for nitrogen anoxia and CO anoxia. The oxidation-reduction changes are read out from the fluorescence of reduced PN and oxidized Fp as described under Methods. The cardiac tissue is rendered anoxic by perfusion with nitrogen-saturated medium. At the beginning of the trace, the heart is perfused with 95% oxygen and after the dead volume is cleared out and a significant oxygen concentration has accumulated in the tissue, increased fluorescence of oxidized Fp and decreased fluorescence of reduced PN are observed. The experiment is repeated in Fig. 3B with CO replacing 67% of the nitrogen; both traces exhibit greater amplitude. After perfusion with the oxygen-saturated medium, rapid oxidation of reduced PN and Fp occurs as in the previous experiment. The half-times (1.5 sec) for the normoxic-anoxic transitions are approximately the same in Figs. 3, A and B. The amplitudes and hence the initial slopes are, however, different. In nitrogen anoxia there is partial oxygenation of the surface of the heart and a diminished amplitude of the oxidized minus reduced changes. In the presence of carbon monoxide, Fp and PN are more highly reduced. Nevertheless, the anoxic-normoxic transition proceeds rapidly; illumination of the heart by the fluorescence excitation causes photolysis of the cytochrome as-CO compound, and consequently rapid oxidation of Fp and PN.

Effect of excitation intensity on extent of cytochrome as oxidation at time of flash photolysis. Figure 4 indicates that the amount of Fp and PN response is diminished as fluorescence excitation is increased. This is because the amount of as-CO in category I is diminished at the higher fluorescence excitation intensities. The fluorescence excitation intensity is decreased by means of a blue Corning glass filter (CS-3-50 (5549)) which transmits 10% of the light at 366 nm and 45% at 460 nm, corresponding to absorbancy increments of 0.10 and 0.26 per filter or a difference of 0.2 and 0.52 in ab-

![Fig. 2.](image)

A: Illustrates reaction of cytochrome as with carbon monoxide in anaerobic heart. B and C: Illustrate effects of flash photolysis on cytochrome as of heart mitochondria in absence of CO (B) and in the presence of CO (C). Absorbancy changes are measured at 445 nm with respect to 455 nm. Time proceeds from left to right in this and in succeeding diagram. Other details are described in text. In section A, absorbancy calibration is indicated on left-hand margin. A 20% change of light absorption causes a division change of recorded deflection. This calibration also applies to each large-scale division of B and C. In A, an absorbancy increase of 443 nm is in an upward deflection while in B and C, it is in a downward deflection as indicated by appropriate arrows.

where the rate of this preflash photolysis is decreased by a decrease of the fluorescence excitation intensity.

Experimental Results

Representative charts of the experimental results illustrate typical responses of the perfused heart. Usually a statistical analysis is unnecessary since each experiment contains a prior control or allows a recovery of the heart to its initial state, after which the experiment is repeated. Thus, the illustrative charts represent one of a series of repetitions of the particular test.

Cytochrome as-CO reaction in perfused heart. In order to identify the as-CO compound in the cardiac tissue and to afford a basis for the application to cardiac tissue of studies on the as-CO compound in isolated mitochondria, we illustrate in Fig. 2 dual-wavelength absorbancy measurements at 445-455 nm made through the wall of the heart into a light pipe and then to the measuring photomultiplier. The heart is initially under normoxic conditions and is perfused with nitrogen-saturated medium. The consequent anoxia causes an upward deflection of the trace corresponding to increased absorbancy at 445 nm. Following complete reduction of cytochrome as, perfusion with 0.6% CO begins and at this low CO concentration approximately 6 min are required to reach the saturation value of cytochrome as-CO. The absorbancy change with CO is about half of the oxygen-nitrogen change identifying the formation of cytochrome as-CO (6, 11). On addition of oxygen, the as-CO compound is converted to the oxidized form as indicated by the downward deflection of the trace to the original baseline. Evidence of flash photolysis of cytochrome as-CO is afforded by Fig. 2, B and C. In anoxia (Fig. 2B), the xenon flash causes no absorbance change. In the presence of 20% CO (Fig. 2C), the cytochrome as-CO compound rapidly photolyzes and gives an abrupt absorbancy decrease at 445 nm. After the flash, CO rapidly recombines with cytochrome as. If however oxygen were present as in later figures, oxidation of cytochrome as and the mitochondrial components would follow. In these experiments residual hemoglobin and tissue myoglobin are converted from the ferrous to the ferrous forms by nitrite perfusion as mentioned under Methods and, thus, interference with their CO and oxygen compounds is negligible.

Fluorescence recordings of PN and Fp. The kinetics of recovery from anoxia are indicated in Fig. 3 for nitrogen anoxia and CO anoxia. The oxidation-reduction changes are read out from the fluorescence of reduced PN and oxidized Fp as described under Methods. The cardiac tissue is rendered anoxic by perfusion with nitrogen-saturated medium. At the beginning of the trace, the heart is perfused with 95% oxygen and after the dead volume is cleared out and a significant oxygen concentration has accumulated in the tissue, increased fluorescence of oxidized Fp and decreased fluorescence of reduced PN are observed.

The experiment is repeated in Fig. 3B with CO replacing 67% of the nitrogen; both traces exhibit greater amplitude. After perfusion with the oxygen-saturated medium, rapid oxidation of reduced PN and Fp occurs as in the previous experiment. The half-times (1.5 sec) for the normoxic-anoxic transitions are approximately the same in Figs. 3, A and B. The amplitudes and hence the initial slopes are, however, different. In nitrogen anoxia there is partial oxygenation of the surface of the heart and a diminished amplitude of the oxidized minus reduced changes. In the presence of carbon monoxide, Fp and PN are more highly reduced. Nevertheless, the anoxic-normoxic transition proceeds rapidly; illumination of the heart by the fluorescence excitation causes photolysis of the cytochrome as-CO compound, and consequently rapid oxidation of Fp and PN.

Effect of excitation intensity on extent of cytochrome as oxidation at time of flash photolysis. Figure 4 indicates that the amount of Fp and PN response is diminished as fluorescence excitation is increased. This is because the amount of as-CO in category I is diminished at the higher fluorescence excitation intensities. The fluorescence excitation intensity is decreased by means of a blue Corning glass filter (CS-3-50 (5549)) which transmits 10% of the light at 366 nm and 45% at 460 nm, corresponding to absorbancy increments of 0.10 and 0.26 per filter or a difference of 0.2 and 0.52 in ab-
The extent of flash photolysis may be evaluated in two ways: 1) by a stepwise variation of the intensity of a single flash lamp, and 2) by a sequence of two flashes. The first method is simple to employ but does not identify 100% photolysis. A pair of flashes spaced at a small time interval identifies 100% photolysis when the second flash causes no response.

In Fig. 6, two 28-J flash lamps are employed. Each is equipped with blue filters giving maximal transmission near 430 nm. The increment of photolysis afforded by the second flash following the first (Fig. 6B) by 0.6 sec is small (<5%). When the second flash follows the first by 1.3 sec a measurable increment of photolysis is observed on the PN trace (~30%). Thus, photolysis is practically complete with the first flash of the 28-J lamp. In many cases, a single laser flash verified these results. The increment of photolysis observed with the second lamp is due to a further progress of the oxygen diffusion outward from the capillaries.

Identification of components involved. In previous studies with the perfused heart, fluorescence signals have been identified with the mitochondrial Fp and with mitochondrial and cytosolic PN. Based on studies of perfused liver, the equilibrium of mitochondria and cytosolic (10, 12) PN requires a few seconds (61) due to the H shuttle between the two spaces. The shuttles which equilibrate the mitochondrial and cytosolic spaces do not operate rapidly enough to afford a cytosolic PN signal that correlates in time with Fp signal, and the kinetics of oxidation of the two components are indistinguishable as shown in Fig. 3 (cf. 61).

Effect of timing of flash. As an essential control, laser flashes in the normoxic and anoxic states give no photolysis jump. The jump response does vary with the time after admitting oxygen to the heart as shown in Fig. 7, essentially varying the number of category I molecules. Figure 7A is a control without flashes. In Fig. 7B and C, the time increments between the flashes is 1 sec. The response to the early flash (Fig. 7B) (0.5 sec after the start of oxidation) is typical of the previous charts; its extent is bounded by the slope discontinuities. However, in Fig. 7C, the delay is 1.5 sec and the prephotolysis oxidation reaction has proceeded about 50% to the normoxic steady state. A flash at this time completes the oxidation of Fp and essentially completes the oxidation of PN. Thus, about 1.5 sec after the start of oxidation no cytochrome oxidase molecules remain in categories 2 and 3, all are in 1 or 4 and negligible further oxidation occurs after the flash photolysis has substantially depleted the category I molecules.

Rate of photolysis response. Most of the recordings here are indicated on a sufficiently compressed time scale that the kinetics of the Fp and PN response are not detailed. Where the xenon flash is employed, the amplitude of the jump is
measured as a slope discontinuity in the traces. In other cases, for example, in Fig. 7, where the liquid dye laser is employed, negligible artifact appears on that trace. This is generally the case with the Fp trace; for example, see Fig. 7C. A series of measurements have been made of the time between the laser flash and the attainment of 90% of the fast response. The end point is identified by the slope discontinuity between the fast and the slow portions of the trace as, for example, in Fig. 7B. Since the response is exponential in nature, the time to reach 90% is measured rather than the time to reach 100%. Ten experiments show values of 100 ± 20 msec for Fp and PN. Recordings were taken on a variety of time scales including 200 msec per division.

Response to physiological parameters. The foregoing has outlined the kinetic aspects of the mitochondrial response under a variety of conditions. Selected biochemical and physiological parameters are varied in the following experiments.

Since the fractional occupancy of mitochondria by CO and oxygen just prior to the photolysis activation is a measure of the effectiveness of oxygen diffusion from the capillaries, the extent of response in the nitrite-perfused organ has been compared with that of the nitrite-free organ in Fig. 8. In Fig. 8A, nitrite is absent and ferromyoglobin would be expected to be assisting in the tissue oxygenation (60, 71). In Fig. 8B, nitrite is present, and not only would the myoglobin be oxidized in the met-form but also vasoactive components. Note that in A, heart is in normoxic state. Further details on B are provided in Figs. 3 and 4.

Previous work (50-53) shows that lanthanum is a specific inhibitor of mitochondrial calcium uptake (6). Its effect on the sarcoplasmic reticulum is significantly different (27, 31). Direct applications of lanthanides to the study of excitation-contraction processes in cardiac tissue have been carried out (59) and more recently in perfused hearts (R. A. Floyd, in preparation). It should be noted that phosphate was omitted over the whole interval of the heart perfusion in order to avoid a precipitation of lanthanum phosphate.

This chart is of great value since it indicates that the photolysis jump can be substantially eliminated in the La3+-perfused heart and thereby adds strong evidence that the photolysis jump is not an artifact but is related to the energy metabolism of the heart.

As the normoxic heart is perfused with 10 μM La3+ (Fig. 10A), an increasing reduction of PN and Fp is observed over an interval of 30 sec, corresponding to a decrease of energy demand on the mitochondria. If now the heart is perfused with CO, and then with O2, the xenon flash at the appropriate time during the reoxygenation of Fp and PN gives no photolysis jump. Thus, the La3+ interferes with the Ca2+ transport in the muscle and the fast response characteristic of category I is not observed.
DISCUSSION

Principle of method. A fundamental limitation to the measurement of enzyme kinetics in solid tissue is afforded by the structure of the particular organ. Thus, the basic approach to enzyme kinetics is, so far, based on destruction of the cell structure, and isolation and purification of the enzyme. While these studies have been of inestimable value for the identification of enzyme intermediates (5) and their reaction mechanisms, a better understanding of metabolic control phenomena (7) has led to the realization that enzymes cannot be regarded simply as isolated catalytic units in the tissue but have the capability to interact with one another in linear and nonlinear fashions (19, 54). An appreciation of the high concentrations of enzymes in situ also questions the relevancy of the study of highly diluted isolated systems (35, 62). Any feasible approach to the problem of enzyme kinetics in solid tissues is of greatest interest from the standpoint of physical chemistry, metabolic regulation, and, as we shall see, the physiological aspects as well. The parameters which rapidly perturb the steady-state levels of biochemical components of the living cell are temperature, pressure, and volume. In the case of single enzymes, perturbations of these fundamental variables have yielded remarkable results (30). But the perturbations are not “enzyme” specific and it is usually not possible to predict or to interpret in a multi-enzyme sequence the consequences of such perturbations. An exception was afforded by Kreezer and Kreezer (46) where the luminous intensity of a light-emitting reaction was read out from the bacterial cell. In another case, the temperature of a small region on the surface of the perfused heart was rapidly raised by the absorption of the light from a 25-J ruby laser (694 nm) (21). In this case, the NADH change as read out by surface fluorometry shows a metabolic response reaching a peak at 200 msec, largely attributed to a thermal activation of enzymes, mostly of glycolysis. That interpretation was supported by subsequent temperature jump studies on cell suspensions (47).

Photoactivation has offered unique opportunities for specific activation of particular enzyme systems involved in electron transport in green leaves and in purple bacteria (9, 29, 33, 70). The technique is applicable to plant tissues; it represents a unique opportunity for observing rapid changes of the respiratory enzyme by Warburg (67) in 1929 and based is the iron-carbonyl bond recognized to be photolyzable at 215 nm (30). The readout of flavoprotein and PN is in the 100-msec range and that Ca2+ is a significant contributor to the energy environment of cardiac mitochondria in the beating perfused heart.

The photolysis of this compound enables the abrupt activation of electron transport in the respiratory chain and can be applied to solid tissue that has been perfused with oxygen. The ideal perturbation, namely, that by oxygen directly, i.e., rapidly to generate oxygen in the tissues may be possible since we have demonstrated the flash photolysis of the Fe2+-CO compound of catalase in the presence of H2O2 in accordance with the steady-state photolysis studies (63 and unpublished observations). The photolysis of the cytochrome a2-CO compound is employed here. In vitro, the rate of dissociation of carbon monoxide from cytochrome oxidase is very slow in the dark (~0.02 sec−1) (6) but background illumination may increase the rate several fold decreasing the half-time to that approximately required for the oxygen to come into equilibrium with the tissue space. Thus, one of the essential design parameters is the rate of photolysis of the a2-CO compound by the measuring light in relation to the rate of diffusion of oxygen from the capillary bed to the mitochondrial cytochrome a2-CO.

The principal result from these experiments is related to mitochondrial function in cardiac bioenergetics. The result is read out from the Fp and PN kinetics in response to carbon monoxide-oxide transitions followed by the flash photolysis, in the presence or absence of lanthanum.
Prior to drawing general conclusions it is appropriate to evaluate various interpretations of the experimental data. The simplest is that mitochondria in situ respond more rapidly to energy demands than do those in vivo. This hypothesis is contrary to several experimental data. First, oxygen pulse or photolysis experiments on intact cells and organelles may fail to show the characteristic rapid response of Fp and PN of the beating cardiac tissue. Ascites cells, liver cells, and kidney tubules, which remain adequately suspended to permit their use in flow or flow-flash apparatus, exhibit half-times for PN oxidation of about 1 sec (unpublished observations). This result suggests that the mitochondria in such cells are responding to ADP + P_{i} and low levels of Ca^{2+} (\sim 10^{-3} \text{M}).

The second possibility is that the cardiac tissue mitochondria are uncoupled and that PN and Fp respond rapidly for this reason. Here again objections can be raised, this time from the physiological standpoint. Anoxia greatly reduces the ventricular pressure indicating that the functionality of the mitochondria is responsible for a significant portion of the work on the heart.

The third possibility is that cardiac mitochondria acquire kinetic properties in vivo that they do not exhibit in vitro, namely, a characteristic rapid response of Fp and PN on flash photolysis of the beating heart regardless of the ADP + P_{i} or Ca^{2+} levels. This possibility has been substantially eliminated by the lanthanum experiments which show that the mitochondria respond slowly to nitrogen oxygen transition as is the case with the asciites tumor cells and kidney tubules mentioned above.

Thus, the fourth possibility is that the isolated and in situ mitochondria show comparable responses and that the cardiac mitochondria have an environment of high calcium or high calcium and ADP + P_{i} in the beating tissue. Essentially, the active metabolic state 3 of cardiac tissue mitochondria is due to both ADP + P_{i} and Ca^{2+}.

The last alternative could be a consequence of the biochemical condition at the time of flash photolysis since the muscle just at the point of recovery from anoxia, is in a "low energy state" with a high ADP and P_{i} environment. Whatever this state may be, the heart beats continuously in the anoxic interval particularly since glucose is present in the perfusate. Indeed the glycolytically produced ATP seems adequate for the cardiac contraction and activates the calcium pump of the endoplasmic reticulum and possibly that of the mitochondria as well. Thus, anoxia limits the total energy resource available to the beating heart rather than eliminating a particular pathway of ion transport. Yet the mitochondria in the transition from anoxia to normoxia appear to be in a high Ca^{2+} and ADP + P_{i} environment characteristic of the beating heart.

Lanthanum is chiefly useful to study the Fp and PN responses to an active → resting state transition (state 3 to 4 (21)) and to flash photolysis in a heart in which the energy load due to Ca^{2+} transport is negligible. While direct inhibition of Ca^{2+} uptake by mitochondria in the sarcoplasm by La^{3+} is possible, based on its great effectiveness in vitro (48, 52, 55), the possibility of high phosphate levels in the sarcoplasm may restrict its initial effects to Ca^{2+} transport through the plasma membrane causing a lack of Ca^{2+} in the sarcoplasm. However, the ruthenium red (55, 56) which forms soluble phosphate compounds gives similar results (unpublished observation).

Mitochondrial calcium accumulation in cardiac muscle. The purpose of this paper is twofold: first, to demonstrate that mitochondrial kinetics can be recorded in solid tissues, and second, to make some preliminary interpretations of the mitochondrial kinetics based on a comparison of their properties in vivo and in vitro. Observations of a fast Fp and PN response of the mitochondria in situ in the rat heart suggest a high Ca^{2+} concentration external to the mitochondria. This result seems to be inconsistent with the current views for the calcium cycle in muscle (8, 58). Nevertheless, it is appropriate to comment on the suitability of the mitochondrial calcium pump as a factor in cardiac contractility (2, 4, 8) and to emphasize that more recent studies show their capabilities in reducing the extramitochondrial calcium concentration to extremely low values (52). The use of mitochondria as intracellular calcium indicators is obviously a topic that extends well beyond the scope of this paper and a comparative study of a wide range of perfused organs over the gamut of their physiological conditions is feasible with this approach and may lead to an appropriate explanation of the results.

Tissue oxygen diffusion. The progress of an oxygen diffusion gradient from the capillary to the mitochondria is at present qualitatively indicated by these results. If the gradient were to move very rapidly compared to the photolysis of cytochrome a_{3} CO by the measuring light and by the spontaneous dark reaction, all the mitochondria would be in category I and the extent of photolysis would correspond to 100% in Fig. 5 for both Fp and PN instead of to the observed 62 and 50%, respectively. Our data indicate that the effect of the measuring light can substantially be eliminated by decreasing its intensity progressively (see Fig. 5). There remains, however, a spontaneous dissociation (k_{d} of equation I of ref. 6). Thus, in the simplest case of interpretation, the photolysis jump is essentially a count of the number of mitochondria in category I at the time of the flash, a value established by an oxygen diffusion gradient in the tissue that is just able to balance the spontaneous dissociation of CO from cytochrome a_{3} (k \sim 0.02 \text{sec}^{-1} at 25^\circ). At this point it seems appropriate only to point to a new method of determining oxygen diffusion from the capillary bed to the mitochondria and to suggest that a suitable criterion is the percentage of the total Fp or PN oxidation which can be observed a) under conditions where the photolysis flash is of sufficient intensity to afford complete breakdown of the category I molecules, b) where the measuring light is so diminished that the photolysis jump is maximal, and c) assuming that the O_{2} concentration gradient reaches the capillaries serving the tissue under observation at the same time. The calculation of the actual diffusion rates depends on computer simulation of the geometries, reaction kinetics, and stoichiometries involved. At present, however, it seems highly appropriate to collect data and to compare values of percentage photolysis from various perfused organs with normal and abnormal circulatory and tissue diffusion patterns.

Limitations of method. The method as described here gives acceptable signal-to-noise ratios for readout of fast Fp and PN signals from perfused cardiac tissue. The coronary
perfusion is sufficiently effective that the oxygen diffusion wave exceeds the rate of breakdown of cytochrome a$_2$-CO induced by the measuring light. In other tissues conditions may be less favorable. In the perfused liver preliminary experiments indicate that the maximum photolysis jump may be no greater than 10% identifying the less effective transfer of oxygen from the blood vessels to the tissue in that organ. Studies on the brain in situ are feasible and preliminary experiments indicate photolysis jumps of about 25% (unpublished observations). Interference from hemoglobin may not be formidable in intact tissues. When carbon monoxide-saturated erythrocytes are replaced by oxygen-saturated erythrocytes the mixing of the two species in capillaries and the photolysis of HbCO in the presence of O$_2$ will occur much more rapidly than O$_2$ diffusion through the tissues. Thus, while all physical methods have limitations in their applications to physiological systems, we can visualize the kinetic method for studying mitochondrial responses in tissues as having a somewhat wider range of applicability than the steady state approaches.

The authors thank Dr. Robert A. Floyd for his advice and helpfulness in the La$^+$ studies, Mr. Guy Salama who evaluated the kinetic responses in detail, and Mr. J. Bunkenberg who provided and aligned the laser. The encouragement and advice of Dr. John R. Williamson in the oxygen perfusion was most helpful.

This work was supported by Public Health Service Program Project Grant 12202-07/08.

Received for publication 1 December 1971.

REFERENCES

34. Gibson, Q. H., and C. Greenwood. Reactions of cytochrome oxi-