CONTENTS OF VOLUME 220

SECTION PAGE
1, 8 Resting and active mechanical properties of trabeculae corneae from aged male rats.
M. L. Weisfeldt, W. A. Loewen, and N. W. Shack 1921
5 Interrelation of carbohydrate and palmitate metabolism in skeletal muscle.
C. H. Rarkey and R. M. Rozeck 1928
2, 6, 11 Ultrastructural modifications in rat heart: responses to exercise and training.
E. W. Banister, R. J. Tomaszek, and N. Coorocks 1935
10 Preparation and properties of water-insoluble thrombin.
W. G. Oten and R. H. Wagner 1941
1, 6 Effects of exercise on cardiac weight and mitochondria in male and female rats.
L. B. Oscai, P. A. Moll, and J. O. Hollaszy 1944
9 Minimal-gradient requirements of motoneurons during posttetanic potentiation.
J. Ushiyama and C. Mc. Brooks 1949
1 Cardiac responses to autonomic nerve stimulation during acidosis and hypoxia in the lamb.
S. E. Downing, E. A. Milgram, and K. H. Halloran 1956
1, 3, 5 Kalemotropic effects of epinephrine: analysis with adrenergic agonists and antagonists.
E. P. Todd and R. L. Vick 1964
1 Carotid baroreceptor influence on total and segmental resistances in skin and muscle vasculatures.
J. DiSalvo, P. E. Parker, J. B. Scott, and F. J. Haddy 1970
1 Effects of amniotic fluid on cardiac contractility and vascular resistance.
R. M. Rodgers, R. N. Stavrovik, and R. I. Reis 1979
8, 11 Mechanical properties of relaxing frog skeletal muscle.
A. S. Bahler 1983
1, 3 Exchange of free and albumin-bound Evans blue in interstitium of hamster kidney.
W. S. Wilde, J. H. Hill, E. Wilson, and G. P. Schielke 1991
4, 11 Some mechanical properties of cat intestinal muscle.
K. A. Meiss 2000
4, 5, 8 Intestinal metabolism and transport of naphthyl N-methylcarbamate in vitro (rat).
J. C. Pekas 2008
3 Natriuretic effects of vasopressin and cyclic AMP: possible site of action in the nephron.
M. Martinez-Maldonado, G. Eknayan, and W. N. Suki 2013
3 Assessment of renal hemodynamic factors in whole kidney glomerulotubular balance.
T. M. Daugherty, S. M. Swoig, and L. E. E. Eary 2021
9 Nitrous oxide: an anesthetic for experiments in cats.
J. I. Vones, W. F. Collins, and A. Toub 2028
9, 11 Behavior of dorsal spinocerebellar neurons during sinusoidal muscle stretch.
D. C. Higgins 2032
1 Effects of hypoxia on myocardial potassium balance.
H. D. Sybers, P. R. Helmer, and Q. R. Murphy 2047
3, 7, 8 CO2 requirements for H+ secretion by the isolated turtle bladder.
T. H. Schwartz and P. R. Steinmetz 2051
1, 3 Quantitative assessment of proximal tubule function in single nephrons of the rat kidney.
B. M. Brenner, T. M. Daugherty, I. P. Uski, and J. L. Troy 2050

CORRIGENDA

Volume 220, January 1971

Page 75: A. H. Moawad and E. E. Daniel. “Total contents and net movements of magnesium in the rat uterus.” Page 80, column 2, line 44, involving the calculation of V_m, the answer to the equation, $-0.012 V$, should read, “$-0.012 V$.” Page 80, column 2, lines 49-54 should read, “The calculated magnesium equilibrium potential is less than the observed membrane potential, which is about 0.050 V. Therefore, some of the tissue magnesium may be excluded by an active transport process against an electrochemical gradient or by loose binding in the extracellular space.”

Volume 220, January 1971

Page 179: M. J. Frank, M. Nadimi, L. J. Lesniak, K. I. Hilmi, and G. E. Levinson. “Effects of cardiac tamponade on myocardial performance, blood flow, and metabolism.” Page 183, legend to Fig. 3 should read, “Effect of cardiac tamponade on left ventricular performance.” Page 183, legend to Fig. 1 should read, “Effect of caval obstruction on myocardial contractility. Abbreviations as in Fig. 2. MRPR and end-diastolic fiber length are significantly reduced, while MIP is unchanged. Contractility is same as that during control state.”