Compensations of cardiac output and other circulatory functions in arterial dogs with large A-V fistulas. Gayton, A. C. and K. Sagawa. 1157

Quantitation of cerebral ischemic pressor response in dogs. Sagawa, K., J. M. Ross, and A. C. Gayton. 1164

Relationship of pyruvate and lactate during anaerobic metabolism. V: Coronary adequacy. Hackaber, W. E. 1169

Vasoactive agents in portal blood during hemorrhagic shock. Roth, C. F. and E. E. Selkurt. 1177

Cardiac output and peripheral blood flow during occlusion of carotid arteries. Polosa, C. and G. Rossi. 1185

Size of microspheres passing through pulmonary circuit in the dog. Ring, G. C., A. S. Blum, T. Karhátov, W. G. Moss, and W. Smith. 1191


Electrical and mechanical activity of myocardium in mice with muscular dystrophy. Kleinfield, M., J. Magin, B. Murphy, and E. Stett. 1203


Spreading depression using chronically implanted electrodes. Ochs, S., K. Hunt, and H. Booker. 1211

Changes of visual pattern discrimination in adult cats after removal of an aseptic area of cerebral cortex. Guatteri, T. 1215

Potentials evoked by sound in the auditory cortex of the cat. Cumani, R. J. and R. C. Grassman. 1219

Neuromyal blocking action of mesalazine. Schipp, R. T., W. F. Kreuster, and S. V. Gaski. 1226

Paraventricular nuclei, neurohypophysis, and parturition. Nibbelink, D. W. 1229

Electrical potentials across isolated small intestine of the rat. Clarkson, T. W., A. C. Cross, and S. R. Toole. 1233

Effect of stimulation on phosphorylase levels of excised rat liver. Zoll, C. T., D. D. Schotellius, and B. A. Schotellius. 1236

Intestinal ischemia shock in normal and Dibenzyline-protected dogs. Hershey, S. G., S. Baetz, and E. A. Rosenri. 1239

Vasotropic substances in blood in intestinal ischemia shock. Baetz, S., G. Hershey, and E. A. Rosenri. 1245

Transmembrane resistance of smooth muscle cells. Barr, L. 1251


Physical and metabolic factors in diffusion of solutes into tissue slices. Cascardo, J., and B. W. Zweifach. 1285

Failure of adrenergic and cholinerge blocking agents to block ovulation in the rat. Moore, W. W. 1293

Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Fleisch, H. and W. F. Neuman. 1306

Sites of plasma albumin catabolism in the rat. Katz, I., S. Rosenfeld, and A. L. Selters. 1307


Enhancement by hypophosystatin of insulin effect on extraneoplastic galactose transfer. Kokke, N. and L. L. Bennett. 1311

Effect of insulin on potassium transfer in isolated rat liver. Merritts, G. E. 1315

Separation of insulin effects on K content and O2 consumption of frog muscle with cardiac glycosides. Goudey, D. R. H. 1320

Quantitative importance of plasma glucose for synthesis of milk fat glycoc. Liech, J. R. and M. Kleber. 1327

Collagen metabolism of rats in various hormonal and dietary conditions. Smith, Q. T. and W. D. Armstrong. 1330

Thyroid function and peripheral thyroxine metabolism after hemorrhage in the rat. Long, S. 1335

Effect of podophyllin lignans of mast cell morphology in rat peritoneal fluid. Padawer, J. 1340

Metabolism of zinc-65. Rubini, M. E., G. Montalvo, C. P. Lockhart and C. R. Johnson. 1345

CORGENDA

Volume 199, December 1960

Page 1232: William A. Broudy and Garfar Carkaske, "Effect of acid and alkaline K phosphate on acid and electrolyte excretion in dogs." Page 1232, second column, first sentence should read: Theoretically, one could account for various levels of ionic excretion as follows: potassium excretion changes from low to high steady state levels as a function of exogenous load of potassium, and not as a function of metabolic acid production or excretion.

Volume 200, January 1961

Page 125: A. Juhász-Nagy and M. Szentiványi, "Separation of cardioaccelerator and coronary vasomotor fibers in the dog." Page 127, second column, second sentence should read: While the A-V O2 difference and the lactate difference increased proportionately in response to pre-ganglionic stimulation, during postganglionic stimulation the A-V lactate difference increased, decreased, or was unchanged, depending on the prevalence of enhanced release, increased uptake, or a balanced uptake and output of lactate.

Volume 200, March 1961

Page 588: R. W. Brauer, G. F. Leong and R. J. Holloway, "Liver injury in isolated perfused rat liver preparation exposed to chloroform." Through an unfortunate oversight, throughout the text and figures, chloroform concentrations are referred to in terms of milligrams per liter instead of the correct unit of grams per liter. Thus, the chloroform levels employed and illustrated, for instance, in figure 2 should read 0.016 g/liter, etc.